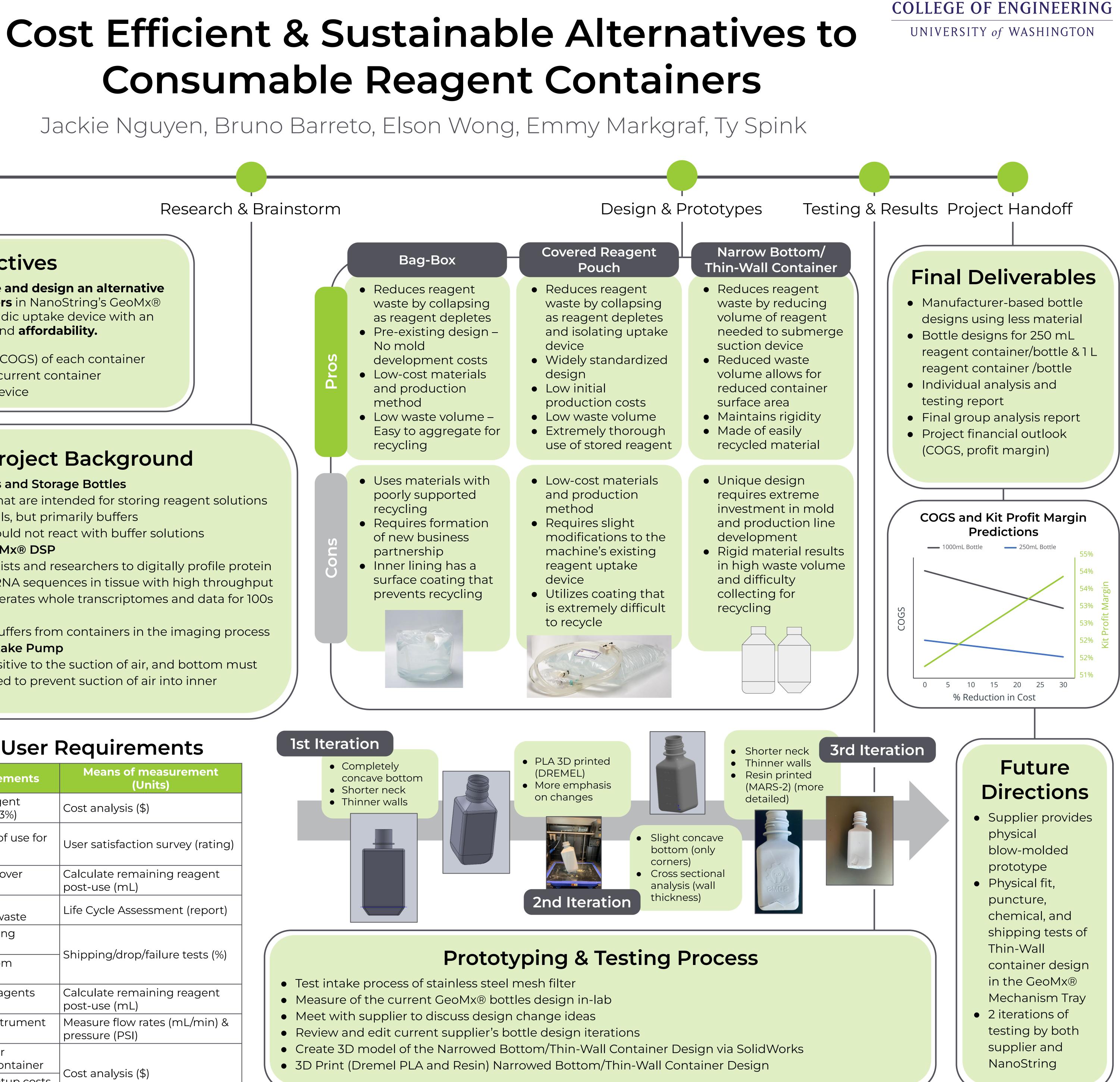
Project sponsored by:

Project Objectives

The goal of our capstone was to **propose and design an alternative solution for multiple reagent containers** in NanoString's GeoMx® Digital Spatial Profiler (DSP) a microfluidic uptake device with an emphasis on sustainability and affordability.

- Reduce the final of Cost of Good Sold (COGS) of each container
- Create a more sustainable solution to current container
- Interfaces with NanoString's current device


Project Background

Reagent Bottles and Storage Bottles

- Containers that are intended for storing reagent solutions and chemicals, but primarily buffers
- Materials should not react with buffer solutions Nanostring GeoMx® DSP
- Allows scientists and researchers to digitally profile protein expression RNA sequences in tissue with high throughput
- Digitally generates whole transcriptomes and data for 100s of proteins
- Consumes buffers from containers in the imaging process Microfluidic Uptake Pump
- Pump is sensitive to the suction of air, and bottom must be submerged to prevent suction of air into inner microfluidics

Design Constraints & User Requirements

User requirements	Target product requirements	Auct requirementsMeans of measurement (Units)• Completely concave bot • Shorter nec		ottom
NGST COGS reduced	Cost less than current reagent container design (Goal:↓33%)	Cost analysis (\$)	Thinner wa	
Customer usability - ease of installation	Maintain or increase ease of use for placement of container	User satisfaction survey (rating)		
Sustainability - reduction of waste	Reduce the amount of leftover reagent at end of use	Calculate remaining reagent post-use (mL)		
	Reduce the amount of non-recyclable container waste	Life Cycle Assessment (report)		
Safe transport	Must not leak reagent during product use	– Shipping/drop/failure tests (%)		
	Must withstand impact from shipping/handling	Shipping/drop/failure tests (%)	 Test intake process of 	Prot
	Must not react with the reagents within the container	Calculate remaining reagent post-use (mL)	 Measure of the cu 	urrent GeoMx®
No change to evice functionality	Must not interfere with instrument function and processes	Measure flow rates (mL/min) & pressure (PSI)	 Meet with supplie Review and edit of 	current supplie
Minimize cost of implementation	No change in required user equipment for new bulk container	Cost analysis (\$)	 Create 3D model 3D Print (Dremel) 	
	Should be no additional setup costs for the new containers	Cost analysis (\$)		

